

What's the paper demonstrate

Remarkable reduction in CO2 and Tug fuel consumption through the application of AutoMoor

Using tugs less

Per year @ 600 ships		30 Hours	
Tug Fuel @ 600 ships		7,500ltrs	
CO 2	333.66 tonnes	20.1 tonnes	
CO 2 AND FUEL	94% less fuel Consumed		
REDUCTIONS	94% CO ₂ reduction		

11 Berths

600 ships per year

2 Tugs per ship

8 Vacuum units per berth

Typical timings with lines (for this port)

- 35 mins for a tie up / arrival
- 15 mins for a let go / departure
- These were averages observed by myself over 12 months

AutoMoor mooring times

AutoMoor detach times

Fuel consumption based on a pair of Niigata 6L25HX engines

- Total fuel burn for a pair of
 Niigata 6L25HX at 130 shaft
 revolutions (¼ power) comes
 out at ~ 124.5LPH
- 2 Tugs @ 124.5LPH = 249LPH
- 500hours = 124,500Ltrs

```
No Vacuum mooring Vacuum mooring
      Mooring time 35 mins
                                        2 mins (Figure 1)
                                        1 mins (Figure 2)
        Sailing time 15 mins
              Total 50 mins
                                        3 mins
Per year @ 600 ships 500 Hours
                                        30 Hours
Tua Fuel @ 600 ships 124,500ltrs
                                        7,500ltrs
                                        20.1 tonnes
                          94% less fuel Consumed
     CO 2 AND FUEL
       REDUCTIONS
                             94% CO , reduction
```


The adjustment of mooring times vs Tug fuel consumption

AutoMoor energy consumption

CO2 produced from AutoMoor's energy consumption

AutoMoor CO₂ calculation

1 machine per vessel calculated at 400VAC.

Berthing	0.51	KWh
72 hours at berth	10.512	KWh
Departure	0.07	KWh
Total per vessel	11.092	KWh

DEVICE	Rating	Unit	Volts (V
M61 Electric Drive (sway adjustment)	7.50	kW	400.00
M02 Vacuum Pump	4.00	kW	400.00
M60 HPU Motor (vertical adjustment)	4.00	kW	400.00
Control System	0.24	kW	230.00
Local Control Panel Heating Circuit	0.40	kW	230.00
External Heating Circuits	0.15	kW	230.00
Socket Outlet		kW	230.00
Total IFL (A)	16.3		

Machine Loads during operation states			
DEVICE	Rating	Unit	Volts (V
Prep for berthing			
M61 Electric Drive (sway adjustment)	7.50	kW	400.00
M60 HPU Motor (vertical adjustment)	4.00	kW	400.00
M02 Vacuum Pump	4.00	kW	400.00
Control System	0.24	kW	230.00
Local Control Panel Heating Circuit	0.40	kW	230.00
External Heating Circuits	0.15	kW	230.00

11.092KWh x **8 units** = 88.736

600 Ships per year

AutoMoor uses 53,241KWh

- AutoMoor uses 53,241KWh
- CO₂ emissions are determined by multiplying energy consumed by carbon intensity of 503.18g CO₂ per kWh [1]
- $(53,241 \times 503.18g / 1000 = 26,789kg)$
- CO2 per year = 26.789 Tonnes

117,000ltrs Diesel

313 Tonnes CO2

286.3T PA

26.7 Tonnes CO2

CO₂ = 2.68 (Average) x Litre of MDO consumed

CO₂ reduction as a result of reduced tug fuel consumption

If we scale it nationally, the reduction is impressive

How it looks scaled nationally

Reduction of **2,789,215** litres of Diesel **7,475** Tonnes of CO²

If we scale it globally, the reduction is staggering

Offers newfound independence from shore-based mooring crews

Minimizing waiting times for tugs, reducing emissions generated by idling machinery

Aids in adhering to sailing schedules

Calibrated to the conditions

It operates at optimal levels without exerting undue pressure

References

[1] Carbon intensity www.cencepower.com/calculators/kwh-to-co2-calculator

[2] CO₂ produced per litre of Diesel consumed in an ICE [2] https://www.econology.info/Emissions-co2-liter-fuel-gasoline-or-diesel-gpl/

Relevant UN SDGs https://sdgs.un.org/goals) 9, 13, 14

www.trelleborg.com